YOUR SOLUTION PARTNER KANAT

KANAT is a leading manufacturer of protective paint and coating solutions in Turkey; based on sustainable future, innovation and creativity with a proven experience that dates back to 1986.

To launch itself into the future, KANAT has:

- a dedicated team of design, production and sales to provide the best service to customers.
- extensive R&D facilities for the formulation and testing of coating solutions.
- commitment to apply safe and healthy procedures in all activities to protect employees, customers and environment.
- a technical group that follows up the industrial organizations such as NACE, AWWA, API, ISO, ASTM to implement new standards and technologies in compliance with customer specifications and industrial standards.
- skilled in developing solutions with qualified project team for its customers by preparing coating specifications and inspection services by NACE certified inspectors.
- technical and logistics services as a whole to customers with the advantages of the special geography at an equal distance to east and west in the point of intersection of energy lines.

Utilizing its expertise in production of PROTECTIVE COATINGS and GENERAL INDUSTRIAL PAINTS, KANAT will continue to protect your future and investments.
BENEFITS OF PROTECTIVE LININGS AND COATINGS FOR PIPELINES

Cost
- Reduce ‘Life Cycle Cost’
- Extend life of investment
- Decrease operational and maintenance costs

Quality
- Protect pipes from adverse affects of transported materials
- Maintain the quality of the materials transported
- Reduce inhibitor consumption in gas pipelines by preventing harmful “black powder” formation

Environment
- Prevent human life and environmental damages caused by structural erosion
- Prevent disruption of social services

Durability
- Prevent outer surfaces of pipelines from corrosive and mechanical effects during the service life
- Prevent inner surfaces of pipelines from corrosive effects in the field and/or stock area
- Support cathodic protection

Life Cycle Cost (LCC*)

Actual cost is sum of all the costs paid during the service life of a paint system.
Life cycle costs can be kept in minimum by properly selected protective coating systems.

Costs caused by unexpected failures:
- Downtime of the line for maintenance
- Possible product leakage causing product and energy loss
- Environmental damages
- Renewal of parts
- Logistics planning difficulties in harsh areas

* Life Cycle Cost
APPLICATION AREAS

KANAT meets a wide range of requirements for interior and exterior protection of pipelines. Linings and coatings manufactured by KANAT are suitable for extensive range of environmental conditions for various projects such as:

- Water pipelines (potable, waste or cooling)
- Oil and gas pipelines
- Piling pipes
- Fuel pipelines

Pipelines need different protective mechanisms depending on the geographical conditions like:

- Buried in soil
- Immersed in lakes, rivers or swamp areas
- In coastal or marine environment
- In atmospheric environment

Application areas of KANAT products according to industrial requirements

<table>
<thead>
<tr>
<th>Product type</th>
<th>Product code</th>
<th>Potable water</th>
<th>Crude oil</th>
<th>Natural gas</th>
<th>Waste water</th>
<th>Buried/Immersed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent free epoxy</td>
<td>18521</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent free phenolic epoxy</td>
<td>19570</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Coal tar epoxy</td>
<td>18000</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass flake epoxy</td>
<td>16200</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Novalac (phenolic) epoxy</td>
<td>19300</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flowcoat epoxy</td>
<td>18760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface tolerant epoxy</td>
<td>15510</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Surface tolerant epoxy</td>
<td>15550</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EN 10289 - Steel tubes and fittings for onshore and offshore pipelines - External liquid applied epoxy and epoxy-modified coatings

This European Standard specifies the requirements of liquid applied external coating, epoxy and epoxy-modified, for the corrosion protection of steel tubes and pipeline fittings.

This coating can be applied for the thicknesses of A (400 µm), B (800 µm) and C (1500 µm) at below specified temperature ranges for buried or immersed pipelines;

- Type 1: Temperatures -20ºC to +40ºC for thickness classification of A, B or C
- Type 2: Temperatures -20ºC to +60ºC for thickness classification of B or C
- Type 3: Temperatures -20ºC to +80ºC for thickness classification of C

ISO 12944 - Paints and varnishes - Corrosion protection of steel structures by protective paint systems.

ISO 12944 describes the types of paint and paint system commonly used for corrosion protection of steel structures. It also provides guidance for the selection of paint systems suggested for different environments and surface preparation grades. According to collected information, expected durability of the paint system can be identified. ISO 12944 consists of the following parts:

- Classification of environments
- Design considerations
- Types of surface and surface preparation
- Protective paint systems
- Laboratory performance test methods and associated assessment criteria
- Execution and supervision of paint work
- Development of specifications for new work and maintenance

Cathodic Protection in conjunction with coatings

Cathodic Protection (CP) is a technique to control the corrosion of a metal surface by making it work as a cathode of an electrochemical cell. Galvanic or sacrificial anodes are made in various shapes using of Zn, Mg and Al. Galvanic anodes are designed and selected to have a more "active" voltage (technically a more negative electrochemical potential) than the metal of the pipelines. For effective CP, the potential of the steel surface is polarized more negative (caused by the electron flow from the anode to the pipeline acting as a cathode) until the surface has a uniform potential. Coatings resistant to Cathodic Disbondment (CD), are able to work in conjunction with cathodic protection with good adhesion to metal surface.

Coatings resistant to CD have affects on;

- Homogenous distribution of the protective current
- Reducing the total current
- Increasing the life of the anode

KANAT products designed for pipelines have excellent cathodic disbondment resistance.

EIS - Electrochemical Impedance Spectroscopy

EIS has been used extensively as a laboratory-based research tool for studying the performance and deterioration of polymeric protective coatings.

- EIS is a non-destructive testing method.
- The EIS data can be used to predict corrosion protection, film porosity, solution absorption into the coatings and film delamination properties.
- EIS also provides a technique to optimize coatings while reducing the time of coating evaluation and gives insight into the physical and chemical properties of the coatings.
- The method currently under development evaluates the coating based on 1-10 scale as follows;

Increasing Corrosion Protection

<table>
<thead>
<tr>
<th>Poor</th>
<th>Protection Begins</th>
<th>Good</th>
<th>Excellent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>
AWWA - American Water Works Association

This standard describes the use of liquid epoxy coatings for the exterior coatings and interior linings of steel water pipes. Coated pipes inspection tests include:

- Holiday test
- Adhesion (pull-off test)
- Dry film thickness, i.e., recommendation is 400 µm minimum

Performance requirements of laboratory applied epoxy coating system include immersion tests of:

a) De-ionized water
b) Sulfuric acid solution
c) Sodium hydroxide solution

both in liquid and vapor phase.

WRAS - Water Regulation Advisory Scheme

The scheme is aimed to assess the results of the testing of materials to determine their compliance with water regulations. Coatings and linings must comply with BS 6920 to be acceptable for WRAS. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water (BS 6920), consists of five separate tests:

- Odour and flavour of water
- Appearance of water
- Growth of microorganisms
- The extraction of substances that may be of concern to public health
- Extraction of metals

WRAS - Water Regulation Advisory Scheme

The material referred to in this scheme is suitable for contact with water for domestic purposes having met the requirements of WRAS 1990 and 1992 standards. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water.

The information relates to the effect on the quality of the water and what it may come into contact and does not signify the approval of the mechanical of physical properties for any use.

COATING, PARTS & LININGS - FACTORY APPLIED EPOXY & FITTED COATINGS

The scheme is aimed to assess the results of the testing of materials to determine their compliance with water regulations. Coatings and linings must comply with BS 6920 to be acceptable for WRAS. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water.

The information relates to the effect on the quality of the water and what it may come into contact and does not signify the approval of the mechanical or physical properties for any use.

APPROVAL NO.: 120281

APPROVAL HOLDERS:

1. Water Regulation Advisory Scheme

The Scheme reserves the right to revoke approval.

Approval: 120280 is valid between October 2012 and October 2018

An entry, as above, will accordingly be included in the Water Framework Directive on the water parameter headed "Material which may present a risk of affecting water quality."

The Directory may be found at www.wraps.co.uk/contracts

Yours sincerely,

[Signature]

Andrew Widder

Appointments & Team Leader

Water Regulation Advisory Scheme

WRAS - Water Regulation Advisory Scheme

The scheme is aimed to assess the results of the testing of materials to determine their compliance with water regulations. Coatings and linings must comply with BS 6920 to be acceptable for WRAS. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water (BS 6920), consists of five separate tests;

- Odour and flavour of water
- Appearance of water
- Growth of microorganisms
- The extraction of substances that may be of concern to public health
- Extraction of metals

WRAS - Water Regulation Advisory Scheme

The material referred to in this scheme is suitable for contact with water for domestic purposes having met the requirements of WRAS 1990 and 1992 standards. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water.

The information relates to the effect on the quality of the water and what it may come into contact and does not signify the approval of the mechanical or physical properties for any use.

COATING, PARTS & LININGS - FACTORY APPLIED EPOXY & FITTED COATINGS

The scheme is aimed to assess the results of the testing of materials to determine their compliance with water regulations. Coatings and linings must comply with BS 6920 to be acceptable for WRAS. Suitability of non-metallic products for use in contact with water intended for human consumption with regards to their effect on the quality of the water.

The information relates to the effect on the quality of the water and what it may come into contact and does not signify the approval of the mechanical or physical properties for any use.

APPROVAL NO.: 120281

APPROVAL HOLDERS:

1. Water Regulation Advisory Scheme

The Scheme reserves the right to revoke approval.

Approval: 120280 is valid between October 2012 and October 2018

An entry, as above, will accordingly be included in the Water Framework Directive on the water parameter headed "Material which may present a risk of affecting water quality."

The Directory may be found at www.wraps.co.uk/contracts

Yours sincerely,

[Signature]

Andrew Widder

Appointments & Team Leader

Water Regulation Advisory Scheme

AWWA - American Water Works Association

This standard describes the use of liquid epoxy coatings for the exterior coatings and interior linings of steel water pipes. Coated pipes inspection tests include;

- Holiday test
- Adhesion (pull-off test)
- Dry film thickness, i.e., recommendation is 400 µm minimum

Performance requirements of laboratory applied epoxy coating system include immersion tests of;

a) De-ionized water
b) Sulfuric acid solution
c) Sodium hydroxide solution

both in liquid and vapor phase.
API RP 5L2 - Recommended Practice for Internal Coating of Line Pipe for Non-Corrosive Gas Transmission Service

Describes performance tests of laboratory coated steel panels for 50 µm dry film thickness;

- Salt spray
- Immersion in water and methanol
- Stripping
- Elasticity
- Adhesion
- Hardness
- Abrasion
- Gas blistering
- Hydraulic blistering

Introduction

Coated steel panels were delivered to Partech for testing which was conducted in accordance with Table 3.5 of API RP 5L2, Fourth Edition, July 2002, Recommended Practice For Internal Coating of Line Pipe For Non-Corrosive Gas Transmission Service.

The coating system applied to these test panels was designated as: Kanepox Flowcoat HB-760

API RP 5L2 requires that each test be performed on duplicate panels. The test results and average coating thickness reported below are based upon duplicate panels for each test condition.

<table>
<thead>
<tr>
<th>Test</th>
<th>API RP 5L2 Acceptance Criteria</th>
<th>Test Method</th>
<th>Results</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Spray</td>
<td>No blistering</td>
<td>ISO 9224</td>
<td>No blistering, 0.125 inch of coating removed in any direction from scribe with pull by clear plastic tape.</td>
<td>Pass</td>
</tr>
<tr>
<td>Water Immersion</td>
<td>No blistering over 0.25 inch from edges. 100% Immersion in saturated CaCO₃ / distilled water solution, 21 days, 77±5°F</td>
<td>No blistering</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Methanol and Water Mixture (1:1 by Volume)</td>
<td>No blistering over 0.25 inch from edges. 100% Immersion in mixture, 5 days, 77±5°F</td>
<td>No blistering</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Stripping</td>
<td>Coating shall flake off and produce powdery particles when rolled. Appendix C, API RP 5L2</td>
<td>Coating flaked and powdered.</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Bend</td>
<td>No visual flaking, adhesion loss, or cracking at 0.5 inch diameter. ASTM D 522</td>
<td>No visual flaking, adhesion loss, or cracking at 0.5 inch diameter. (1.8 mils)</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Adhesion</td>
<td>No material lifting other than cuttings. Appendix D, API RP 5L2</td>
<td>No lifting.</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>94 Buchholz @ 77±2°F. DIN 53 153 104 Buchholz.</td>
<td>Hardness values</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Gas Blistering</td>
<td>No blistering. 1200 ± 100psi, 24hrs., 77±5°F</td>
<td>No blistering.</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>Hydraulic Blistering</td>
<td>No blistering.</td>
<td>No blistering.</td>
<td>Pass</td>
<td></td>
</tr>
</tbody>
</table>

Partech Worldwide, LLC Report 1301.1 Phone & Fax: 201-648-1661 August 20, 2013

KANAT has conformity reports for performance tests below;

- Fuel resistance (unleaded gasoline containing 15% MTBE)
- Resistance to temperature difference
- Softening
- Adhesion
- Blistering

Atlas Cell Test

This specification covers test methods for immersion testing of linings used to protect interior surfaces of fuel storage tanks and transportation pipes. It is used to determine chemical resistance of linings to temperature difference between inner and outer surface of tank or pipe.

KANAT has conformity reports for performance tests below;

- Fuel resistance (unleaded gasoline containing 15% MTBE)
- Resistance to temperature difference
- Softening
- Adhesion
- Blistering
Pipelines Coatings Range of KANAT Protects Your Budget and Investments.

Solvent Free Coatings
100% Volume Solid

Environmentally Friendly Coatings
Less VOC

In accordance with National and International Legislations
Certified Coatings

Minimum Life Cycle Cost
Compatible With Cathodic Protection

Long Service Life
Easy Maintenance Applications

Long Pot Life and Resistance for Various Temperatures

High Film Thickness Per Coat

Good Resistance to Soil Chemicals
POTABLE WATER PIPELINES

Coatings for potable water pipelines should be corrosion and abrasion resistant. In addition, the coating should preserve the quality of water regarding to odour, flavour, appearance, growth of microorganism and other harmful substances.

KANAT products can be applied under humid and cold weather conditions as low as 5°C with minimum risk of cracking.

KANAT products manufactured for potable water pipelines;
- Hygienic
- Solvent free
- Benzyl alcohol free
- 100% solid, environmentally friendly
- High film thickness per coat
- "Good" performance in EIS measurements
- Good cure characteristics at low temperatures and/or high humid environment
- Moisture tolerant

18521 KANEPOX LINING FREE

- Solvent free hygienic epoxy lining suitable for potable water pipelines
- Potable water compliance is tested by WRc-NSF according to BS 6920 and approved by WRAS
- Meets the performance requirements of AWWA-C210
- Excellent corrosion resistance
- Good cure characteristics at low temperatures and/or high humidity environment
- Long pot life (20°C, 1 hour)
- Smooth and glossy surface appearance
- Benzyl alcohol free
- Barrel and pail packaging available

KANAT products manufactured for water pipelines are corrosion and abrasion resistant, free from odour, flavour and substances harmful to human health.
GAS PIPELINES

Expected property of an inner gas pipe coating is to decrease transportation costs by decreasing friction of flowing gas via smoothening the surface. Additionally, gas pipe inner coatings shall have superior corrosion protection even at low dry film thicknesses.

KANAT products with high volume solids cause less VOC during the application.

KANAT flowcoat;
- Have smooth surface.
- Reduce friction resulting in easy gas flow.
- Reduce operation costs.
- Prevent contaminating of gas.
- Provide easy inspection before commissioning.
- Provide high corrosion protection in any stock fields.
- Provide high corrosion protection at low dry film thickness.
- Prevent downtimes and dirt pickup.

18760 KANEPOX FLOWCOAT HB-760
- Solvent based epoxy, inner lining of natural gas pipes
- High volume solid
- Meets the performance requirements of API RP 5L2
- Reduce friction resulting in operating cost savings
- High corrosion resistance
- Could be applied at low dry film thickness
- Smooth and glossy surface appearance
FUEL PIPELINES

Interior Linings of pipelines to be used for fuel transportation shall have high chemical resistance to various types of fuel.

In KANAT portfolio, solvent based and solvent free phenolic-novalac epoxy coatings for various fuel pipelines are available. Chemical resistance of these coatings was tested by international independent third party laboratories.

KANAT produces high chemical and heat resistant products based on novalac epoxy resin technology.

19570 KANEPOX HYGIENIC
- Solvent free phenolic epoxy lining
- Meets the performance requirements of AWWA-C210
- Meets the performance requirements of MIL PRF 4556F
- Meets the performance requirements of Atlas Cell Test with 15% MTBE containing unleaded gasoline (ASTM D6943:2003)
- Excellent corrosion resistance
- Excellent chemical resistance
- Good cure characteristics at low temperatures and/or high humidity environment
- Smooth and glossy surface appearance
- Benzyl alcohol free

19300 KANEPOX NOVA PREMIUM
- Solvent based, novalac epoxy lining
- High volume solid
- High chemical resistance
- Meets the performance requirements of MIL PRF 4556F
- Meets the performance requirements of Atlas Cell Test with 15% MTBE containing unleaded gasoline (ASTM D6943:2003)
- Resistant to fuel and crude oil
- High resistance up to 95°C in water
- High resistance up to 90°C in crude oil
- High resistance up to 260°C dry temperature with or without insulation
- Good cure characteristics at low temperatures and/or high humid environment
GLASS FLAKE REINFORCED EPOXY COATINGS

Glass flake coating systems work on the principle of presenting a tortuous path to corrosive ions migrating through the permeable binder.

Micron scaled glass barriers provide;
- Low moisture vapor permeation
- Low lateral shrinkage during cure
- Similar thermal expansion coefficient to carbon steel
- Reduced risk of cracking and/or peeling

Glass flake reinforced epoxy coatings have;
- Good resistance to undercutting corrosion
- High abrasion resistance
- Good resistance to cathodic disbondment
- High chemical resistance

KANAT offers high resistant glass flake reinforced epoxy paint for harsh environments of power plants and offshore structures.

Application areas;
- Superior protection on splash zones of piling pipes exposed to marine environment
- Suitable to be used for cooling water pipes of power plants
- Protection of steel and concrete structures exposed to harsh environments

16200 KANEPOX GLASSFLAKE HB
- Solvent based epoxy, reinforced with glass flakes
- High volume solid
- Resistance to cathodic disbondment was tested according to ASTM G8:2003
- High resistance to soil chemicals
- Suitable to use on splash zones of piles exposed to sea water
- High abrasion resistance
- High chemical resistance
- Moisture tolerant

Cathodic protection is the most common method for corrosion protection of buried lines or immersed pipelines to sea. Steel surfaces must be coated with cathodic resistant paint systems to ensure effective and economic cathodic protection. The most important failure of coatings in conjunction with cathodic protection is disbondment of coating due to cathodic current which is defined as “Cathodic Disbondment”.

KANAT produces coatings resistant to cathodic disbondment.
CHEMICAL RESISTANCE AT ELEVATED TEMPERATURES

Chemical resistant coatings for elevated service temperatures are demanded especially in petroleum industry. This demand could be met by novalac epoxy resin technologies.

Application areas;
- Petrochemical plants
- Chemical transportation lines
- Thermal water transportation lines

KANAT offers chemical resistant coatings for elevated service temperatures especially required by petroleum industry.

KANAT products;
- Take advantages of novalac resin technologies.
- Show high resistance against the chemicals used in the petrochemical plants.
- Have excellent performance on high temperature surfaces.

19300 KANEPOX NOVA PREMIUM
- Solvent based, novalac epoxy lining
- High volume solid
- High chemical resistance
- Meets the performance requirements of MIL PRF 4556F
- Meets the performance requirements of Atlas Cell Test with 15% MTBE containing unleaded gasoline (ASTM D6943:2003)
- Resistant to fuel and crude oil
- High resistance up to 95°C in water
- High resistance up to 90°C in crude oil
- High resistance up to 260°C dry temperature with or without insulation
- Good cure characteristics at low temperatures and/or high humid environment
EXTERIOR PROTECTION OF PIPELINES WITH LIQUID COATINGS

Pipelines can be located as buried, submerged in lakes, rivers or marsh areas and also in offshore structures.

KANAT offers wide range of solutions for external protection of pipelines in accordance with ISO 12944.

Sample system: C5-M, very high (marine) atmospheric corrosivity category

<table>
<thead>
<tr>
<th>Zinc Rich Epoxy Primer</th>
<th>High Build Epoxy Midcoat</th>
<th>Polyurethane Topcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x75 µm</td>
<td>1x125 µm</td>
<td>1x50 µm</td>
</tr>
<tr>
<td>11420</td>
<td>12200</td>
<td>37770</td>
</tr>
<tr>
<td>KANEPOX ZINC RICH 80</td>
<td>KANEPOX UNIFAST</td>
<td>KANPOLY ACR ENAMEL HS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zinc Ethyl Silicate Primer</th>
<th>High Build MIO Epoxy Midcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x75 µm</td>
<td>1x125 µm</td>
</tr>
<tr>
<td>10500</td>
<td>14700</td>
</tr>
<tr>
<td>KANAT ZnR SILICATE PRIMER</td>
<td>KANEPOX UNIFAST MIO</td>
</tr>
</tbody>
</table>

Sample system: Im1, Im2, Im3 immersed in fresh water, sea water or buried in soil

<table>
<thead>
<tr>
<th>Glass Flake Reinforced Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x500 µm</td>
</tr>
<tr>
<td>16200</td>
</tr>
<tr>
<td>KANEPOX GLASSFLAKE HB</td>
</tr>
</tbody>
</table>

Sample system: Im1, Im2, Im3 immersed in fresh water, sea water or buried in soil

<table>
<thead>
<tr>
<th>Zinc Rich Epoxy Primer</th>
<th>Surface Tolerant Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x75 µm</td>
<td>2x150 µm</td>
</tr>
<tr>
<td>11420</td>
<td>15510</td>
</tr>
<tr>
<td>KANEPOX ZINC RICH 80</td>
<td>KANEPOX TOL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface Tolerant Epoxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x300 µm</td>
</tr>
<tr>
<td>18000</td>
</tr>
<tr>
<td>KANEPOX TAR</td>
</tr>
</tbody>
</table>

KANAT products exposed to atmospheric or immersion environmental conditions have the following features:

- High UV resistance
- Resistance to soil chemicals
- Suitable for under insulation applications
- Suitable to use on splash zones of piles exposed to sea water
- Good resistance to cathodic disbondment